

Maitre "d 12/17/86 4

connections with remote servers, maitrd also listens in on a second, local socket for requests from
an application program, which is any program that has been modified to ru under Maitre d'.
These applications first connect to the local maitrd process, asking for an available machine. If
the local load is less than the sendoff threshold, or no remote servers are presently available, the
application is told to perform the job locally. Otherwise, maitrd does a round-robin traversal of
its list until it finds a machine where the garcon has advertised a willingness to accept jobs. It
passes back to the application program the internet address of this server and terminates the local
connection with the application.

3.4. Program Execution

In addition to listening on its control port, garcon also listens on a data or service port. It is
this address that maitrd gives to the application, and it is the responsibility of the application to
create the connection. Once the connection is created, the garcon process creates a copy of itself.
This copy communicates with the local application and executes the requested task on the remote
machine, leaving the original garcon free to handle further requests from other applications. All
communication between the application and the server is done through this data port.
Commands and data are passed from the application process to the remote machine; results and
an exit status are passed back from the server to the application process.

Figure I shows a typical Maitre d' interaction occurring in three stages. Permanent
communication streams are shown in thick black; temporary ones in thin. In stage I the user
invokes some application (compiler, formatter, etc.) which connects to the local maitrd and
requests an available server. This maitrd has been maintaining status connections with many
garcone (only one shown in the picture). The client daemon passes a server address out of its
maitrd port (A) to the application program and terminates its connection with the application.
Stage II shows the application connecting to the garcon port (C) that was returned by the local
maitrd and requesting a service. If the application and request are valid (see sec. 4.1.2), the
server creates a copy of itself (called forking in UND). Note that the service port is passed down
to the newly created dedicated child process (C'). The dashed lines leading into the garcon port
indicate that the parent stops attending to the application on the other end of the channel once
the child garcon has taken over. Stage III has the dedicated garcon creating the process to
perform the requested task and acting as a data buffer between the application program and that
task. When the requested process finishes, its exit status is returned to the application at the
originating machine, and the child garcon terminates.

3.5. 1/0 Handling

The C-shell provides every process with three default file deacriptors or data channels:
standard input (etdin), standard output (8tdout) and standard error (atderr). Stdout and .tderr
are both output channels; tdin is the only input channel. Many UNIX programs are capable of
taking their input from etdin, and placing their output on etdout. Convention has error messages
going to etderr. All processes return an 8 bit status'value upon termination.

Stdin to a garcon task is passed directly from the originating machine. But, on the return
path of the service channel, Maitre d' provides only one data stream. The extra bandwidth
needed to handle 8tdout, *tderr and the exit status is obtained by returning all data from the
server in finite packets, and prepending each packet with a four byte header. The first byte
indicates the type of data being returned: etdout, etderr or exit status. If the header indicates an
exit status, the second byte indicates how the process exited, and the third byte is the exit status.
Otherwise, the final three bytes .in the header give the size of the packet to be sent. The
dedicated garcon process, acting as a buffer between the application and the remote task, handles
the data encoding.

&NO

btaltre 'd 1/75

Figure I

Client Server
maitidI ao

I .

A C.

grDttupot....................................... -1
..

serve' p rt (request

.... servicprteur~ce

appainporm apalicatictd heeaafion on cale whih oe i

I -* : 11

-; A&4 . r

Maitre "d 12/17/85 6

Renotla(Fl). outFD. cmdp);
jut laFD;
Ilt outD;
stract pipepiece *cadp;

where

struct pipeplece {
char Opp.sawo;
clar *spp. arg;

)

and InFD and outFD are the input and output file descriptors that should be used for input to
and output from the remote task. There are no provisions for redirecting otderr. Note that
cmdp is a pointer to struct pipeplece. A list of these structs indicates a sequence of piped
commands, allowing multiple tasks to be piped together on the remote end. Appendix A shows a
typical interaction with RemoteRun.

4. Operational Considerations

4.1.1. Error Handling

Maitre d' itself does not have any provision for handling errors other than reporting them to
the application. Some common error situations are:

- lost connection with remote host
- remote garcon prematurely exited
- remote machine could not execute process

Whenever possible, an application should recover from the error and accommodate the user's task
as quietly and politely as possible. This may be done either by finding another host, or by
processing the job on the user's machine. All of our applications attempt to run the job locally it
there is a remote failure.

Because of redirection facilities and pipes in UNIX, a difficult situation arises if the remote
server is the recipient of a local process's output, and one of the errors listed above occurs. The
process cannot be restarted in any way. For example:

tbl i.me I mattront nroff -me > le.out

where mat front is a generic front end that attempts to process its arguments on a remote
machine using etdin an input. Once data from tbI is passed to mat front, it cannot be retrieved if
the remote nroff terminates due to some error related to Maitre d. Even if matfront kept a
copy of t£6'. output (which would be prohibitively expensive), output already generated by the
remote nroff would have gone to file.out. Any attempt to restart the job might cause duplicate
output to appear in file.out. Because Maitre d' operates at the user level, above the C-shell and
UNIX kernel, no simple solution exists for this problem. Consequently, if an error occurs after a
remote job has started executing, and the job is receiving its input from a pipe, the user's task
terminates with an error message. Processes not using redirection do not have this problem, and
can be restarted

Malt d 1/7a 7.

4.1.2. Security

-- * When a machine services users on other machines, various security problems arise. Some of
the concerns are:

Unauthorized Use
Administrative barriers must be respected.

Unauthorized Acces
Use of spare cycles should not allow access to restricted files.

Unauthorized Ezecution
Not all machines should have to provide all services to all clients.

Maitre d' solves these security problems with client verification, task verification, non-
privileged users and logfiles.

When a connection is requested to either of garcon's two ports, the originating host is
checked against a list of authorized hostnames contained in the startup configuration file. The
request is ignored if the host is not authorized and the illegal access attempt is recorded in a log
file.

If a request for service arrives, garcon guards against unscrupulous applications by checking
to see that it has actually advertised itself as available. If not, the request is ignored. The
request is then checked against a list of reesonable services that garcon has been told about in the
configuration file. If it is not in the list, garcon informs the application that it doesn't know about

*, the service. It is then up to the application to either choose another server or process the job
locally.

Associated with each process under UNIX is a user name governing that process' access
rights. When a task runs under garcon, the privileges are first set to those of some named user
given in the configuration file. in Berkeley's implementation, all service tasks run as nobody,
which is an actual entry in the password file originally created for system administration
functions. Nobody has no password, home directory or shell and can only read public files. If
process accounting is being run on the server machines, it would be worthwhile to create a
dummy account used only by garcon. In this way, the standard accounting software could
determine the percentage of resources which are being used on behalf of remote requests.

Once a server has begun a remote job, and if its load has risen above the acceptance
threshold, it is possible to have this job's priority lowered or re-niced during the period that the
server is not accepting new jobs. Active jobs from other machines will then not impinge upon jobs
coming from a server machine's own users. The priority is raised again once the server's load falls
below the threshold.

6. Implementatlon Notes

All programs that awe to operate under the Maitre d' system require a front end (using
RemoteRun) on the client machine to decode the returned data. Those applications that use
etdin, etdout, and atderr for 1/O do not need a front end on the remote machine, and may simply
use mat front as an interface. Since Maitre d'supports only these three channels of data transfer,
a few programs did not easily integrate into the system.

5.1. The Compilers

5.1.1. C

Creating the application to handle C compiles was relatively trivial due to the structure of
the compiler, which is broken down into four distinct parts: pre-processing, compilation, assembly
and loading. Pre-processing and loading are always performed on the local machine. The
compilation and assembly, which comprise almost 70% of the total cycles, are done on the remote

'p -.

Malt 'd 12/17/85 S

machine.

A 5.1.2. ?a.el

A good example of a package that did not lend itself well to running under Maitre d' was
the Berkeley Pascal interpreter (pi). There were problems on both the client and server end.

Sva'er
Berkeley Pascal (pi) does not use atdin for anything, but instead requires that its input come
from a fle (or several Ales). The executable image produced by pi goes directly to a file and
cannot be directed elsewhere (such as atdout). Things are further complicated by the fact
that pi uses tderr for only one error message. All other error messages go to stdout. This
causes problems for garcon which expects remote tasks to communicate back to the
application via atdout & stderr.

Client
Because of the way #includes lies are handled in pi, it is semantically legal to concatenate
all of the files and compile them as a single stream. Originally, we ran a very simple Pascal
pre-processor over all of the user's source, scanning for #indude directives and including
them as we found them, sending over all of the lies as one large program. Unfortunately,
all of the debugging and diagnostic errors produced by Berkeley Pascal have line numbers
relative to the beginning of each source ile, so this was not a satisfactory solution. Students
were being told that they had a syntax error on line 1237, when their largest Ale contained
only 250 lines.

These problems were solved by building a simple Ale transfer protocol on top of the three
data channels already provided for by Maitre d. This extra level required another layer of pre-
processors on both the client and the server machines. A user runs Rpi on the local machine
which reads the user's program, looking for #include directives. Instead of starting up pi on the
server machine, Rpi instead requests that Spi (server pi) be executed. Data going from Rpi to Spi
includes a header giving the size of the Ale, the length of the fle name, the Ale name, and finally
the Ale. This is done for every Ale that is needed in the compilation. Spi reconstructs the original
source code in a temporary directory on the server machine. When all flies have been received,
Spi executes pi on those lies in the temporary directory and the compilation is performed. Spi
takes care of transferring pi's stdout to stder. If the compilation completes successfully, Spi reads
the executable image left behind by pi and sends it to stdont. This is picked up by garcon and
sent to Rpi, which knows that anything coming to otdout from the remote machine belongs in an
executable Ale on the local machine. The relationships between the processes, machines and files
are shown in figure II.

Maitre d' provides only a primitive connection mechanism through which a task on a
remote machine may communicate with its calling process on the local machine. For tasks
flexible enough to operate using only three data channels, the mechanism is sufficient. The point
of this discussion on the Pascal application i3 to show that those tasks requiring more complicated
fle access can be accommodated by building on top of the interface provided. It may seem
cumbersome and expensive to transfer all of a user's source fles from client to server for each
application's invocation. But, until a reliable remote fle system becomes widely available, this
type of explicit data transfer is necessary. 7

VeA" the int rpret sceunimb a lie o the rormn "kadsdle Ume m" m the source Ale, it reado te mned fit
into it input Atras though it were eoded in-He by the uV.141

' Even with a remte sB ytem the data would still need to be noved between mabine. The treader would just
be eonuq eteby tran pqat.

*MAL

Maitre 'd 12/17/8I 9

]Figure 11

Client server

tfew

S. Evaluation A Performance

6.1. Design Criteria
AlonsoI2I describes six points for choosing a good load-balancing strategy: stability,

implementability, cost, autonomy, transparency and tunability. Maitre d' meets all of these
Criteria.

* (1) Stability. A server machine could become inundated with requests from clients if it had
recently announced its availability. As instantaneous state information is very hard to come
by, use of in algorithm that avoids processor flooding is very important. Maitre d' relies on
a round-robin selection mechanism of available host. to minimize the possibility that any
one client might overload a server. Although it is possible for several client. to all
simultaneously request the same server, this type of selection synchronization is highly
unlikely.

Maitre 'd 12/17/85 10

(2) Implementability. Maitre d' runs at the user level and requires no modifications to the
UNIX kernel. It is running on VAX 750s, 780s, 785s, micro VAX Ila, and a Sequent parallel

% % processor. The basic package is about 4000 lines of well-commented C code (approx. 50K
bytes object) and is portable to any machine running Berkeley UNIX 4.2 or 4.3BSD.

% (3) Cost. The overhead in running Maitre d' is minimal. There are three considerations for
cost: client overhead, network traffic and server overhead. In the worst case, when no servers
are available, the user's process usually requires less than .5 seconds of real time to
determine that the job must be performed locally. Since the class of jobs running under
Maitre d' are typically long-lived, this time is unnoticeable (but consistent). Traces show
that it is rare for jobs to require more than a few hundred kilobytes of data to be
transferred between client and server machines. On a 3 or 10 megabit ethernet, the impact
of the extra traffic is minimal. Since servers only broadcast changes in state information
and spend most of their time blocked waiting on requests, the cost of running the server is
also low. Using acceptance load thresholds of 5 and 2 on our VAX 785's and 750's
respectively', each server was averagi:g about 40 state changes a day.

% (4) Autonomy. The decision to accept or reject jobs is completely up to the server, so no
machine can be forced to take on work from outside clients. In addition, the types of jobs a
server will accept, and the client machines from which those jobs may arrive is definable by
the system administrator in a configuration file. The server machine may also impose a

1 &pre-emption policy on remote jobs, always giving priority to its own users.

(5) Transparency. The fact that a process is being executed on a remote machine can be made
completely transparent to the user. Users need never know that their tasks are being
performed elsewhere.

(6) Tunability. System parameters can be set and reset through a configuration file and a
dynamic control program (mdc). Thus, Maitre d' can be run in various environments
without the need for recompilation.

6.2. Performance

Several factors contribute to the success of Maitre d'. First, the decision to export only
high-cost, CPU intensive jobs allows a machine, regardless of how busy it might be, to provide
swift response time for those jobs. As the less expensive, non-ported jobs are no longer competing
with the more costly ones for resources, they too enjoy an improvement in response time. Table I
shows comparative statistics for April 1984 and April 1985 taken on a VAX 11/780 (ucbcory). In
1984, the machine ran without Maitre d'. In April 1985, the only jobs being offloaded were
Pascal and C compiles. About 3000 compiles per week were being exported to two VAX 750's

A' operating as dedicated remote servers. Given are the UNIX five minute load averages; the times
to start up the editor on a trivial file, and the times (in seconds) to compile and execute locally
the following short CPU intensive program:

-)

* There were sonw problen-u initially with the Sequent, but it turned out to be a bug in their 4.2 releae and not in
Maitre d'.

• Experience has shown thee lotAs to be corfortable operating points. Below these values, the machines tend
"A'- toward idlenem. Above them response tint becorrs intolerable.

,n't

Maitre 'd 12/17/8s 11

(

Itt. .J.;
tor(l=O ; 11000 ; 1**)

for (J=O ; J41000 ; J**)

The demands on the machine from instructional coursework were identical for the two
months being compared. The increase in performance can be seen across the board in all the
statistics, with an average improvement factor of over 2. The increase in perceived machine
performance is even more dramatic considering that the VAX 780 was running with 16 megabytes
of memory in 1984, but only half that during the 1985 sampling period. There were no other
configuration changes. The decrease in variance for all the figures demonstrates that a balanced
system has the added feature of offering more predictable response times.

Table I
VAX 11/780 Performance Comparisons

ucbeory April 84 April 85 Improvement
(W/o Matreod') (WI Maitre d') Factor

eamplee 2140 2134 -
mean uaere 20.01 19.31

median ueer8 20 19.74
variance ueer8 97 100

mean load 6.12 2.52 2.42
median load 4.6 1.8

variance load 23.95 6.07
mean editor (eec.) 1.46 .82 1.78

median editor I I
variance editor 1.87 .362

mean compile (sees) 11.90 7.04 1.69
median compile 8 6
variance compile 94.6 20.42

mean ezecution (eecs) 63 26.7 2.35
median ezecution 30 14 -''vari .ance ex ecut ion 5564 1142-

The presence of lightly loaded machines, and Maitre d'8 ability to locate them also
contributes to its success. Across even as few as six machines, the likelihood that one of them will
be idle at any given time is fairly high. This is partially because of the type of workload imposed
by instructional computing, i.e., a machine is very busy shortly before an assignment is due, and
much less so at other times. This can be seen in appendix F, where the five minute load average
(Maitre dl key value) is given for six machines over a one month period. These figures were
taken in March 1984 on machines not running Maitre d'. After Maitre d' was in place, our
busiest machine (a VAX 11/785) performed 66709 compiles, 38524 of them remotely, in just 96

p '

Matre d 1/17/55 12

days. The less powerful 11/750's would average between three and five thousand compiles per
machine per week. An overloaded machine looked to find an idle remote processor without
success on only 98 occasions. This indicates that, for the most part, at least one lightly loaded
machine could always be found among the six possible servers.

One metric used to gauge the relative utilization of machines over a long period of time is
the mean load average. This is simply the average value of a machine's load average when
sampled at regular intervals. From this value we also found:

(a) that those machines whose mean load average before Maitre 4' was less than garcon a'
acceptance threshold value tended to have their mean increase after load sharing was in
place, and

(b) that those machines whose mean load average was above maitrd's sendoff threshold saw a
decrease in their mean load average, as well as a marked decrease in the variance of the load
average.

This simply means that those machines most in need of assistance will benefit the most from
load sharing, and machines which were idle will find themselves more busy. This is exactly what
should be happening and is not surprising.

7. Conclusions
We have implemented an elective load-balancing system and demonstrated its utility.

Further applications can be easily introduced to operate within the package's environment.
Performance metrics indicate that this system is highly successful in creating a more responsive
and pleasant working environment for users.

S. Acknowledgments

* This work was made possible in part by a donation of equipment from Digital Equipment
Corporation and the support of the State of California MICRO Program[3]. It was also supported
in part by the National Science Foundation under grant DMC-8503575 to Professor Domenico
Ferrari. The original version of Maitre d' was initially proposed and authored by undergraduate
students Chris Williams and Chris Guthrie[81. Professors Richard Fateman, Lou Katz and
Domenico Ferrari should be credited for their patience in seeing this project through to the end.
Finally, special thanks to Doug Cooper and Harry Rubin for their tireless advice on this paper's
organization and presentation.

Sites interested in obtaining the Maitre d' load balancing software should contact the author
in care of the Computer Systems Support Group (CSSG) at UC Berkeley.

'L ' ' <. . -r A- AN-., A N S. ,'-,.,' " < ' -' '/,'" ',-' %' ," < ' "

Appendlx B

Sample Configuration File

I Maitrd Load Balancinag Coat iguratioz File

0 Instructions available to outside world
0 Itcousad ase command path po i)
I Possible Client
0 C-Cocbzyzy)
9 People Servers for no
9 84ucbxyzzy2, ... so entries usas all
0 9try both a client and a server
* 2tucbzyupy3
Garcon coat iguration option
0 GicoptioW, tvalueo
9 Clearing Nots Machine
* m-Cucbxyzzy),

* These machines wie allowed It:
Cucbear
Cucbeast
Cucbdali
Cacharpa
0 These machines should be willing to take jobs from se:
Sucbfratty
Sacbzoooy
Sucbmim
Cacbbuddy
* This guy takes and receives:
Ducberaie

* Request from (localbost -ourselves)
mlocalbost

Commands We Can Its

Anything bere can be run by people on the outside
I First column a naw by request
Second colun a path of associated program
Third colum a user snsm for tank

Icsh /bin/cobh root would be a bad ostry

* IS
Icem lb/ccon nobody
lnroff /usr/bia/nroff noody
Icat /bit/cat, nobody
Unato /bm/date, nobody
locho Ibla/echo nobody
Iwboami ser/acbwhoand nobody

Appendix B

Ihostiasme /bin/hostsmes nobody
ISpi /usr/local/Spi nobody # pascal front end
15cc IusrllocallScc nobody # C front end
Itroff /usr/bia/troff nobodydiof
Itroff-.p Iusr/local/troff..p abodyI irf
Irio /nor/cb/rwbo nobody
Ispice /cadlbin/spice nobody # circuit simulation

* Server rustins option...

*Load threshold above which jobs are not accepted
Cload 3.0
Nuaber of non-idle users above which jobs are sot accepted
Cusers 20
Maximum number of clients allowed in
Oclients 15
When the load exceeds threshold. raise priority (renice) of
0 active jobs to argument. Is anix. this Is aalogoss to preemption.
Onice 4

Appendix C

Selected Manual Pages

Rpi - Remote pascal interpreter
Rcc - Remote C compiler
mdc - Maitre d' dynamic control program

MI

RPI(l) UNIX Programmer's Manual RPI (l)

NAME
Rpi - local front end for using pi (pascal) with maitrd
Spi - server front end for using pi (pascal) with garcon

-SYNOPSIS
Rpl [+gvd +o (i. -(p1 options]I
Spi I +pv -1pi options]I

V D~SCRIPTION
Rpi is a "user- friendly" interface for using pi with the maitrd/garcon load balancing software. It
finds an available machine for processing, transfers files needed by pi, and brings back any output
generated by the remote pi. Before beginning the compile, Rpi copies any existing obj file to
obj.bak.

In its simplest form, it is invoked just as pi is:

Rpi prog.p

Since pi requires as input a file ending in .p, Rpi does not call up pi immediately, but instead
requests to run Spi on the server machine. Rpi and Spi transfer needed source files and new
object files to one another. Spi creates a temporary work directory on the server end. It is here
where the pi is actually performed. Pi error messages are routed back to the user through stderr.

NIf the compilation was successful (an obj file exists in the remote work directory), the obj file is
moved bck to the current working directory. Only a single status message from the remote
machine gives any indication that the program is not being compiled locally.

Spi can not be used directly, is it expects data to be headed with filestat information. In this
manner, multiple files can be passed though a single pipe. d

Pascal include files cause numerous headaches with remote processing. The source files must all
be scanned for #include directives. As all work is done in a single directory on the remote end,
including files from a directory other than the current one can cause "minor" problems. File
pathnames are modified to replace all occurrences of '/' with '\' to maintain unique names in the
flat name space on the remote machine. When the compilation completes, the executable's symbol
table is examined for all references to 'T. These are changed back to '/'. Munging the filename
in this way has two consequences. A filename is not allowed to include the special character '\',
and all error messages generated by the compiler referencing the munged file will have '\'s
replacing '/'s. So, an error in file /a/b/c/d/file.i will be reported as an error in \a\b\c\d\file.i.

OPTIONS
+5 When the server has completed compiling, it will normally clean up whatever workspace

it required. If the +g option is used, garbage generated by the compilation will be left
behind, and the workspace path will be given upon program termination. This is only
really useful for debugging.

+o Normally, Rpi output will go into obj. This option allows you to specify the output file.

+v This puts Rpi into verbose mode. It can sometimes be fun to watch if you like this sort
of stuff.

+d This sets a debugging flag. It is not used for much. +v is better.

-[p options]
Any switches preceeded by a - will be passed through untouched to the pi program.

ERRORS
If, for any detectable reason, the remote end can not perform the compilation (host dies, failed

4th Berkeley distribution 26 January 1985

MDC(l) UNDC Programmner's. Manual NMflC (1)

SEE ALSO
maitrd(l), garcon(l), Rpi(l), Rcc(l)

DLAGNOSTICS
?Ambiguous command abbreviatida matches more than one command
?Invalid command no match was found
?Privileged command command can be executed by root only

BUGS
The 'machine' command is probably silly.

4th Berkeley distribution 7Juy18 2

MDC(l) UNIX Programmer's Manual MDC (I)

NAME
mdc - maitrd control program

SfYNOPSIS
/usr/local/mdc [command argument .. J

DESCRIPTION
Mdc is used by the system administrator to control the operation of the maitrd load balancing
software. For any machine running the maitrd cient daemon, mde may be used to:

* set the dynamic load threshold at which jobs are exported,

* force the daemon to retead the configuration file, restarting all active connections, and
attempting to reestablish dormant ones,

* display the current status of the maitrd daemon,

* • kill the daemon without restarting it.

Without any arguments, mde will prompt for commands from the standard input. If arguments
are supplied, mdc interprets the first argument as a command and the remaining arguments as
parameters to the command. The standard input may be redirected causing mde to read
commands from file. Commands to mdc may be sent to any machine running the maitrd software.
If no machine is given explicitly on the command line, mdc directs the command to the last
referenced machine. If no machine has yet been referenced, then the local host is assumed. Any

* number of hosts may be given on a command line. Mdc will send the command to each host.
Commands may be abbreviated; the following is the list of recognized commands.

?[command ...I

help [command ...
Print a short description of each command specified in the argument list, or, if no
arguments are given, a list of the recognized commands.

kill (host)')
Terminate the active maitrd daemon at the host (or hosts) immediately. This command
is restricted to the superuser.

load # ((host))'
Set the load threshold to the second argument at each of the indicated (or implied) hosts.
This command is restricted to the superuser.

exit
quit

Exit from mdc.

restart ((host)*)
This will cause the maitrd daemon at the indicated hosts to reread the configuration file.
close all existing connections and attempt to reestablish connections with each host given
in the configuration file. All in-core statistics are zeroed. Jobs in the middle of
processing are unaffected and will continue normally.

status { (host)*)
This displays the status of the maitrd daemon at each indicated host. This is an
unrestricted command.

machine { host)
This sets the default host to its argument. With no arguments, it returns the current
default host.

FILES

/usr/local/matrd.conf maitrd configuration file

4th Berkeley distribution 7 July 1985 1

PI(I) UNDC Programmer's Manual RPI1;

exec, etc...), the compilation will be performed locally.

SSEE ALSO
maitrd(l). garcon(), matfront(l), mdc(l), socket(2), pi(l)

BUGS
The translation between '/' and '\' is annoying.
The (S)arbage switch is really useless unless there is the capability to return the entire temporary
directory back to the local machine.
Error messages from the compiler are sent to standard error. Any output from Rpi must be
redirected with *I&* or

Bk i tJ y

*"1

4th Berkeley distribution 26 January 1085 2

RCC (1) UNIX Programmer,'s Manual RCC (I)
,.

NAME
Rcc - Remote C Compiler
Scc - Server C Compiler

SYNOPSIS
Rcc option] ... file ...

DESCRPTON

Rcc is the UNIX remote C compiler. Rcc accepts several types of arguments:

Arguments whose names end with '.c' are taken to be C source programs; they are compiled, and
each object progiam is left on the file whose name is that of the source with '.o' substituted for
'.c'. The '.o' file is normally deleted, however, if a single C program is compiled and loaded all at
one go.

- In the same way, arguments whose names end with '.s' are taken to be assembly source programs
and are assembled, producing a '.o' file.
Rcc (capital R) is not the same as rce (lower case r). The latter fires up shells on remote machines
and requires that the user have an account there. Rcc is written to work with the Maitrd remote

server software and requires only that there be machines willing to accept job requests. When
invoked, Rcc checks to see if the load is low enough to run the compile locally. If so, Rcc acts
just like cc. If the local load is too high, Rcc will attempt to locate a foreign machine that is not
too busy and execute much of the compilation at the remote host. If such a machine can not be
found, or if the connection becomes 'fiakey' or lost, Rcc will force the remote compilation to be
done locally. Scc is used to perform the remote compilation and is called automatically from Rcc.
Scc should not be run stand-alone.

C preprocessing (cpp) and loading (ld) are always done locally. Only compilation (ccom) and
assembly (as) are done on the remote machine. If Rcc is invoked with the -S option, assembly on
the remote end will be bypassed. If the input file is only an assembly source program (ends in
'.s'), Rcc will not even attempt to assemble it remotely. It will be assembled locally.

The following options are interpreted by Rce just like in cc. See Id(1) for load-time options.

-_C Suppress the loading phase of the compilation, and force an object file to be produced

even if only one program is compiled.

-g Have the compiler produce additional symbol table information for dbz(l). Also pass the
-Ig flag to Id(l).

--go Have the compiler produce additional symbol table information for the obsolete debugger
sdb(l). Also pass the -Ig flag to ld(1).

-w Suppress warning diagnostics.

-p Arrange for the compiler to produce code which counts the number of times each routine
is called. If loading takes place, replace the standard startup routine by one which
automatically calls monitor(3) at the start and arranges to write out a mort.out file at
normal termination of execution of the object program. An execution profile can then be
generated by use of prof(1).

-p Causes the compiler to produce counting code in the manner of -p, but invokes a run-
time recording mechanism that keeps more extensive statistics and produces a gmon.out
file at normal termination. Also, a profiling library is searched, in lieu of the standard C

, library. An execution profile can then be generated by use of gprof(1)

-0 Invoke an object-code improver.

4th Berkeley distribution 20 February 1984

RCC(l) UNIX Programmer's Manual RCC (1)

-A Passed on to as, making initialized variables shared and read-only.

-8 Compile the named C programs, and leave the assembler-language output on
corresponding Ales suffixed '.s'.

-E Run only the macro preprocessor on the named C programs, and send the result to the
standard output.

-C prevent the macro preprocessor from eliding comments.

-0 output
Name the final output file output. If this option is used the file 'a.out' will be left
undisturbed.

-Dname-def
-Dname

i I Define the name to the preprocessor, as if by '#define'. If no definition is given, the
name is defined as "1.

-Uname
Remove any initial definition of name.

-Idir '#include' Ales whose names do not begin with '/' are always sought first in the directory
of the file argument, then in directories named in -I options, then in directories on a
standard list.

-3.tring

Find substitute compiler passes in the files named string with the suffixes cpp, ccom and
c2. If string is empty, use a standard backup version.

-tipOI21
Find only the designated compiler passes in th- files whose names are constructed by a
-B option. In the absence of a -B option, the string is taken to be 'rusr/c/'.

-d Run in debugging mode showing the names of intermediate Ales as they are created.

-v Run in verbose mode, with the remote end indicating its actions as it goes along.

Other arguments are taken to be either loader option arguments, or C-compatible object
programs, typically produced by an earier cc run, or perhaps libraries of C-compatible routine;.
These programs, together with the results of any compilations specified, are loaded (in the order
given) to produce an executable program with name &.out.

IlLES
file.c input lie

r. file.o object Ile
&.out loaded output
/tmp/ctm? temporary
/lib/cpp preprocessor
/lib/ccom compiler
/usr/c/occom backup compiler
/usr/c/ocpp backup preprocessor
/lib/c2 optional optimizer
/Lib/crtO.o runtime startol
/lib/mcrt0.o startol for profiling
/usr/lib/gertO.ostartol for gprof-pro~ling
/lib/libc.a standard library, see ingro(3)
/usr/lib/libe.p.sproling library, see intro(3)
/usr/include standard directory for '#include' files
mon.out file produced for analysis by prof(l)

4tb Berkeley distribution 20 February 1984 2

RCC (1) UNIX Programmer's Manual RCC (1)

gmon.out file produced for analysis by gprof(1)

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C-a tutorial
D. M. Ritchie, C Reference Manual-'" monitor(3), prof(1), gprof(1), adb(1), ld(1), dbx(1), as(l), maitrd(l), garcon(l)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader. Any problems occurring due to the migration of
program source should result in the compilation being performed locally. Unless the -v option is

set, this transition should be completely transparent.

BUGS
, The compiler currently ignores advice to put char, unsigned char, short or unsigned short

' variables in registers. It previously produced poor, and in some cases incorrect, code for such
declarations.
Each file on the argument line is compiled separately, so the final program may have been
compiled on many different machines. This can be considered as either a bug or a feature.

N,

.

.d

.. °

4th Berkeley distribution 20 February 1984 3

gi k

Appedix 7 Load Averages For March 1984

VAX 73O. VAX 750

ked

- L Ada~; vith mn

1 4X 78 0 VAXQ m I eQ O 750 t

SB S. I7 ov~ 7

." 0 1

'"VAX ' *VAX 750

B .

B. ___ *_* 5 1 _* ,,l555 5*

References

() G. Almes and E. Lazowska, 7Te Behavior of Ethernet-Like Computer Communications
Networks

(2) R. Alonso, The Design Of Load Balancing Systems For Local Area Network Based
Distributisons, U.C. Berkeley Publication, Fall 1983

(3) R. Fateman, DEC MICRO Research Proposal, May 16, 1984, Department of Electrical
Enginering and Computer Science, University of Caliornia, Berkeley.

(4) W. Joy et W~., Berkeley Pascal Users Manual Version 3.u, Computer Science Division,
Department of Electrical Engineering and Computer Science, University of California,
Berkeley.

(5) S.J. Leffler, R.S. Fabry & W.N. Joy, 1983, A 4.fESD Interproces Communication Primer,
Computer Systems Research Group, Department of Electrical Engineering and Computer
Science, University of California, Berkeley.

(6) R.M. Metcalfe and D.R. Boggs, Ethernet: Distributed Packet For Local Computer
Networks, Comm ACM 1g, 7, July 1976, 395-404.

(7) S. Sechrest, Tutorial Ezamples of Interproce8s Communication In Berkeley UNIX 4.2
BSD, Computer Science Research Group, Department of Electrical Engineering and
Computer Science, University of California, Berkeley.

(8) C. Williams and C. Guthrie, A Proposal To Study Remote Processing of CPU Bound Jobs
On Idle Computers, Computer Systems Support Group, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, 1984

rI

